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Solutions of a„2¿1…-dimensional dispersive long wave equation
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A special type of multisoliton solution with a particular dispersion relation is obtained for Wu-Zhang
equation@which describes~211!-dimensional dispersive long waves# by the standard Weiss-Tabor-Carnvale
Painlevétruncation expansion. Using a nonstandard truncation of a modified Conte’s invariant Painleve´ ex-
pansion, two different types of soliton solutions without any dispersive relation is found. Two types of periodic
wave solutions expressed by Jacobi elliptic functions are found by the truncations of a special extended
Painlevéexpansion. The soliton solutions are special cases of the corresponding periodic solutions.
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I. INTRODUCTION

In Ref. @1#, three sets of model equations are derived
modeling nonlinear and dispersive long gravity waves tr
eling in two horizontal directions on shallow waters of un
form depth. Omitting the higher order terms, one of the
equations, the Wu-Zhang~WZ! equation, can be written as

ut1uux1vuy1wx50,

v t1uvx1vvy1wy50, ~1!

wt1~uw!x1~vw!y1
1

3
~uxxx1uxyy1vxxy1vyyy!50,

where w21 is the elevation of the water wave,u is the
surface velocity of water along thex direction, andv is the
surface velocity of water along they direction. By scaling
transformation and symmetry reduction, Eq.~1! can be re-
duced to the (111)-dimensional dispersive long wave equ
tion

v t1vvy1wy50,

wt1~wv !y1
1

3
vyyy50.

~2!

A good understanding of all solutions of Eq.~1! is very
helpful for coastal and civil engineers to apply the nonline
water wave model in a harbor and coastal design. Theref
finding more types of solutions of Eq.~1! is of fundamental
interest in fluid dynamics. In this paper, we will find th
soliton solutions for Eq.~1! directly by using the standar
and nonstandard truncations of the Weiss-Tabor-Carne
~WTC! approach and the modified Conte’s invariant Painle´
expansion for the WZ equation.

It is well known that the Painleve´ analysis developed by
Weiss, Tabor, and Carnevale@2# not only is one of the mos
powerful methods to prove the integrability of a model, b
also can be used to find some exact solutions. Conte@3#,
Pickering @4#, and Lou @5# had generalized the WTC ap
proach in some ways to find more exact and explicit so
tions of nonlinear models.

Furthermore, the WTC method and the modification a
proaches may also be applied to nonintegrable syste
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Though the nonlinear systems may have not the Pain´
property, some useful results such as exact solutions
Bäcklund transformations can still be produced from t
truncated Painleve´ test @6–8#. In this paper, basing on th
truncated WTC Painleve´ expansion and the Conte’s modifi
cation, we study the exact solitary wave solutions of t
system~1!. The periodic solutions are also studied by t
standard and nonstandard truncations of a special exte
Painlevéexpansion given in Ref.@5#.

In Ref. @9#, it was pointed out that for Eq.~2!, there are
some types of single soliton solutions without any dispers
relation. It is natural to ask whether the situation is remain
for the WZ equation. The results of this paper show us
positive answer.

In Sec. II of this paper, after finishing a brief discussi
on the non-Painleve´ integrability of the WZ equation, we us
the standard and nonstandard truncations of the WTC P
levéexpansion and a special extended Painleve´ expansion to
obtain soliton solutions with and without dispersion re
tions. Section III is devoted to find periodic solutions of E
~1! by using another special type of extended Painleve´ ex-
pansion. The last section is a simple summary and disc
sions.

II. TRUNCATED PAINLEVE´ EXPANSIONS AND EXACT
SOLITON SOLUTIONS

A. Non-Painlevéintegrability of the WZ equation

Before to find some exact solutions of the model~1!, we
briefly discuss its non-Painleve´ integrability by means of the
standard WTC approach. Usually, when we say a mode
integrable we should pointed out that the model is integra
under what special meaning~s!. For instance, we say a mode
is Painleve´ integrable if the model possesses the Painle´
property and a model is Lax or inverse scattering trans
mation~IST! integrable if the model has a Lax pair and th
can be solved by the IST approach. An integrable mo
under some special meanings may not be integrable u
other meanings. For instance, some Lax integrable mo
may not be Painleve´ integrable @10#. On the other hand
though many scientists believe that the Painlevle´ property is
©2002 The American Physical Society05-1
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a sufficient condition on the integrability@11# and the Lax
pairs can be found from the Painleve´ analysis@12#, the Lax
pairs of various Painleve´ integrable models have not yet bee
found @13#. In other words, whether possessing the Painl´
property is a sufficient condition for Lax and/or IST int
grable is still unclear. In this subsection, we only discuss
non-Painleve´ integrability of the model.

As usual, we take the following Laurent expansion of t
function u[u(x,y,t), v[v(x,y,t), andw[w(x,y,t) about
a singular manifold[f(x,y,t):

u5(
j 50

`

ujf
j 1a, v5(

j 50

`

v jf
j 1b, w5(

j 50

`

wjf
j 1g.

~3!

Substituting the leading terms (j 50) of Eq.~3! into Eq.~1!,
by means of the standard leading order analysis, we can
tain
-

-
fi-

d

-

t

no

ab

03660
e
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a521, b521, g522 ~4!

and

u05
2

3
A3afx , v05

2

3
A3afy ,

w052
2

3
~fy

21fx
2!, a251. ~5!

Now substituting the full expansion~3! into Eq. ~1! yields
the recursion relation

AS uj

v j

wj

D 5S F1,j 21

F2,j 21

F3,j 21

D , ~6!

where the coefficient matrix reads
A[S 2a

A3
@fy

2~ j 21!1fx
2~ j 22!# 2

2a

A3
fyfx fx~ j 22!

2
2a

A3
fxfy

2a

A3
@fx

2~ j 21!1fy
2~ j 22!# fy~ j 22!

j

3
~ j 23!2fx~fx

21fy
2!

j

3
~ j 23!2fy~fx

21fy
2!

2a

A3
~ j 23!~fx

21fy
2!

D , ~7!
C

Z

.

and the functionsFi , j 21 , i 51, 2, 3 are complicated func
tions and only dependent onuk ,vk ,wk ,k50,1, . . . , j 21
and the derivatives off. All the functions$uj ,v j ,wj% can be
determined by the recursion relation~6! except for those spe
cial resonancej which cause the determinant of the coef
cient matrixA to vanish,

D[detA

52
2

9
aA3~ j 11!~ j 21!~ j 22!~ j 23!~ j 24!~fx

21fy
2!3.

~8!

If the model possesses the Painleve´ property, four resonance
conditions located atj 51, 2, 3, and 4 should be satisfie
identically. That means five arbitrary functions (f and one of
uj , v j , and wj for every j 51, 2, 3, and 4) should be en
tered into the general expansion~3!. However, the detailed
calculations show us that the resonance conditions aj
53,4 are not satisfied identically. So the Eq.~1! does not
pass the WTC Painleve´ test. That means WZ equation has
Painlevéproperty and then it is not Painleve´ integrable.

B. Standard truncation of WTC and multiple soliton solutions
with a special dispersion relation

Though the model is non-Painleve´ integrable, we can still
construct some exact solutions by means of some suit
 le

Painlevé truncated expansions. According to the WT
method@2#, we consider the standard truncation of Eq.~3! at
first,

u5
u0

f
1u1 , v5

v0

f
1v1 , w5

w0

f2
1

w1

f
1w2 ,

~9!

where $u1 ,v1 ,w2% is a particular seed solution of the W
equation. Simple inspection of this system shows that ifu1 ,
v1, andw2 are purely constants, the WZ system~1! is trivi-
ally satisfied. Substituting Eq.~9! with the trivial constant
seed solution into WZ equation~1! and vanishing all the
coefficients with different powers off, one can reobtain Eq
~5! and

w15
2

9

~fy
213fx

2!

fx
21fy

2
fxx1

2

9

fx
213fy

2

fx
21fy

2
fyy1

8

9

fxfyfxy

fx
21fy

2 ,

~10!

while f is an arbitrary solution of the equation system

f t52
A3

2
w12~u1fx1v1fy!, ~11!
5-2
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2A3@3w2~]x
21]y

2!1~]x
21]y

2!2#f19a~] t1u1]x1v1]y!w1

50, ~12!

and

12w2~fx
21fy

2!212w1~fxx1fyy!29w1
2

18fx~2fxxx12fxyy23w1x!

18fy~2fxxy12fyyy23w1y!

14~3fxx
2 13fyy

2 14fxy
2 12fxxfyy!50. ~13!

In order to give out one special type of explicit solution, w
choose the ansatz

fy5cfx, ~14!

with c being an arbitrary constant. Obviously, under the
satz~14!, we have

u05
2

3
A3afx , v05

2

3
A3acfx ,

w052
2

3
~11c2!fx

2 , w15
2

3
~11c2!fxx, ~15!

while Eqs.~11!–~13! are simplified to

f t52
A3

3
a~c211!fxx2~u11cv1!fx ~16!

and

w2fxx50, w2fx
250. ~17!

Substituting solutions of Eqs.~16!, ~17! with Eq. ~14! into
~9!, we obtain the first type of solution for the WZ equatio
~17!. Combining the exponential solutions of the equati
system of Eqs.~16! and ~14!,

f511(
i

N

exp„ki~x1cy!1v i t1j i0…, ~18!

with a particular type of dispersion relation between co
stantski andv i

v i52
A3

3
a~c211!ki

22d1ki ~19!

yields a special type of multiple soliton solutions of Eq.~1!,
whered15(u11cv1) andj i0 are arbitrary constants.

From above, we know that Eq.~1! possesses two branche
in the standard Painleve´ analysis (a561). So from the
Conte’s expansion one can obtain some new exact solut
by nonstandard truncation@4#. However, if we use directly
the nonstandard truncated expansion basing on the Co
Painlevéexpansion, we cannot find the nonsingular ring~or
bell! type soliton solutions for all the fieldsu, v, andw. To
overcome the singularity problem to obtain the ring~or bell!
03660
-

-

ns

e’s

type soliton solutions, one may use the two-singular ma
fold approach@14# or the Pickering’s modification@15# or the
extended Painleve´ analysis approach.

C. Extended Conte’s truncation and the soliton solution
without dispersion relation

In Ref. @5#, it is pointed out that the Painleve´ expansion
form ~3! can be modified as

u5(
j 50

`

U jj
j 21, v5(

j 50

`

Vjj
j 21, w5(

j 50

`

Wjj
j 22,

~20!

with j being determined by

jx5(
j 50

N

Sjj
j , jy5(

j 50

N

Cjj
j , j t5(

j 50

N

K jj
j . ~21!

When we takeN52, the general expansion~20! with Eq.
~21! is just the Pickering’s modification@15#. Now using the
nonstandard truncation of Eq.~20!, one can find some type
of new exact solutions. More specifically, we fix the expa
sion function as

jN52[g[l2x, x[S fx

f
2

fxx

2fx
D 21

, ~22!

with l being an arbitrary constant andf being an arbitrary
function of space-time variables. When we takel50, the
modified expansion~20! with Eq. ~22! will be reduced back
to the usual Conte’s expansion. As in the usual Conte’s
pansion, the coefficientsU j , Vj , and Wj are all invariant
under the Mo¨bius transformation. From the special selecti
~22!, Eq. ~21! becomes

gx5211
S

2
~l2g!2,

gy5C2Cx~l2g!1
1

2
~Cxx2CS!~l2g!2, ~23!

gt5K2Kx~l2g!1
1

2
~Kxx2KS!~l2g!2,

where

S[
3

2 S fxx

fx
D 2

2
fxxx

fx
, C[2

fy

fx
, K[2

f t

fx
, ~24!

which are the Mo¨bius transformation invariants. It is
straightforward to prove that all the compatibility condition
gxy5gyx , gxt5gtx , gty5gyt are satisfied automatically be
cause of Eq.~24!.

When the expansion function of Eq.~20! is selected asg
shown by Eq.~22!, the corresponding nonstandard truncati
form reads
5-3
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u5
U0

g
1U11U2g, v5

V0

g
1V11V2g,

w5
W0

g2
1

W1

g
1W21W3g1W4g2. ~25!

Substituting the nonstandard truncated expansion~25!
with Eq. ~23! into Eq. ~1! and vanishing all the coefficient
of different powers ofg we can find a set of complicate
overdetermined equations to fix the functionsU j ,Vj , ( j
50,1,2), Wk , (k50, . . .,4), S, C, andK. However, if we
only want to find the single soliton solution, we can ta
them as constants simply. Omitting the detailed calculati
to solve these overdetermined equations, we only list
final result

U05
A3

3
a~Sl222!,

U15
A3

3
~2SaC2l2Sal1A3V1C1A3K !,

U25
A3

3
aS, V052

A3

3
aC~Sl222!, V252

A3

3
aSC,

~26!

W052
1

6
~C211!~Sl222!2, W15

l

3
S~C211!~Sl222!,

W250, W35
l

3
S2~C211!, W452

S2

6
~C211!, a251

andV1 is an arbitrary constant. WhenS, C, andK are taken
as constants, the general solution of Eq.~23! reads

g5
AS

S HASl2A2tanhFA2

2
AS~x2Cy2Kt1d1!G J ,

~27!

whered1 is an arbitrary constant. The fieldsu, v, andw in
Eq. ~25! with Eqs. ~27! and ~26! are bell- or ring-type
soliton solutions. Note that six arbitrary constan
($S,K,C,l,d1 ,V1%) are included. One of the most interes
ing facts may be that there is no dispersion relation am
the constantsS, C, andK. However, if one puts some type
of special boundary conditions to the solitary wave solutio
then some types of dispersion relations have to be in
duced. For instance, if we take the following boundary co
ditions @j[AS(x2Cy2Kt1d1)#:

uuj→`→0, vuj→`→0, wuj→`→0,

then the corresponding dispersion relation reads

3K222S24SC222SC450.

By the way, using the standard truncated form of the
tended Painleve´ expansion Eq.~20! with Eqs.~22!, i.e., Eq.
03660
s
e

g

,
-

-

-

~25! with U25V25W35W450, one can obtain anothe
type of soliton solution that has the form

u5
A3

3

a

g
~Sl222!2

A3

3
~aC2Sl2A3V1C1aSl2A3K !,

v52
A3

3

aC

g
~Sl222!1V1 , ~28!

w52
11C2

3 F ~Sl222!2

2g2
2

Sl

g
~Sl222!

1A3aV1y2S1
S2

2
l2G ,

whereg is given by Eq.~27! andV1 is an arbitrary solution
of the Burgers equation

V1t5
A3

3
a~11C2!V1yy

1
A3

3
@~alSC2A3V1!~11C2!2A3CK!]V1y

~29!

with

V1x5CV1y . ~30!

This type of solution is the generalization of that obtained
the standard truncation solution of the WTC expansion. If
takeSl252, the solution~28! is equivalent to the first type
of solution obtained by the standard truncation solution
the WTC expansion. When we takeV150, Eq.~28! with Eq.
~27! is a new type of soliton solution without dispersio
relation. The fieldsv andu in Eq. ~28! are kink or antikink
solitons whilew is a bell type soliton forV150.

It is also worthy to mention that the usual tanh expans
method can also be considered as the general expansio
Eq. ~25! with

U05V05W05W150. ~31!

Detailed calculations show us that the soliton solution o
tained by the truncated expansion of Eq.~25! with Eq. ~31! is
equivalent to Eq.~28!.

III. PERIODIC SOLUTIONS OF EQ. „1…

Usually, the single soliton solutions of integrable mode
are special limited cases of the elliptic function solutions.
our knowledge, the periodic solutions expressed by Jacob
Weierstrass elliptic functions cannot be obtained by the W
standard truncated expansion, Conte’s standard and
standard truncated expansions, and the Pickering’s modi
tion and the two-singular manifold approach.

If we take N→` in Eq. ~21! and select the functions
Sj , Cj , and K j such that the summations become so
closed forms, then it is also possible to obtain some type
5-4
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new exact solutions of the DLWE by using the standard a
nonstandard truncations of the extended Painleve´ expansion
~20!. For instance, a special type of summation form of E
~21! may have the forms

jx5A(
j 50

M
2 jsj

j j , jy5A(
j 50

M
2 jc j

j j , j t5A(
j 50

M
2 jk j

j j .

~32!

Using the expansion functions expressed by Eq.~32! in Eq.
~20!, we may use both the standard and nonstandard t
cated expansions to find new exact solutions. To find
solutions with elliptic functions, we takesj , cj , and kj as
constants andM54. The compatibility conditions of Eq
~32! for sj , cj , andkj being constants reads

cj5c2sj , kj5k2sj . ~33!
03660
d

.

n-
e

Whenj is determined by Eq.~32! with M54 and Eq.~33!,
the nonstandard truncation form can be taken as

u5
U0

j
1U11U2j, v5

V0

j
1V11V2j,

w5
W0

j2
1

W1

j
1W21W3j1W4j2, ~34!

while the standard truncation has the same form as Eq.~34!
but with U25V25W35W450.

Substituting Eqs.~34!,~32!,~33! and M54 into Eq. ~1!
and vanishing all the coefficients of different powers ofj,
we have
cV2U21U2
212W450, kU21W31cV1U21U1U250, cV0U22cV2U050,

~U11k1cV1!U01W150, U0
21cV0U012W050, U2V21cV2

212cW450,

kV21cV1V21U1V21cW350, kV01cW11U1V01cV1V050,

3U2W41U2s413cV2W41V2s4c1c2U2s41c3V2s450, cV0
212cW01U0V050,

cV2W31kW41U1W41U2W31cV1W41
s3

3
~c2U21U21c3V21V2c!50, ~35!

s2

3
~11c2!~U21V2c!1W2~U21cV2!1W4~U01cV0!1W3~U11cV11k!50,

s2

3
~11c2!~U01cV0!1W0~U21cV2!1W2~cV01U0!1W1~cV11U11k!50,

c3V0s11U1W01kW01cV0W11cV1W01U0W11cV0s11U0s11c2U0s150,

2cV0s012c3V0s013U0W013cV0W012c2U0s012U0s050.
case
Solving out the equation system~35! yields three nontrivial
cases. The first case

U15
2s1~11c2!

3U0
2cV12k, U25

U0s3

3s1
, V05cU0 ,

V25
cU0s3

3s1
, W052

U0
2

2
~11c2!, W152

2

3
~11c2!s1 ,

~36!

W25
8c2s1

313U0
4s3c226c2s2U0

2s113U0
4s318s1

326s2U0
2s1

18U0
2s1

,

W452
U0

2s3
2~11c2!

18s1
2

, W352
2

9
s3~11c2!,

s05
3

4
U0

2 , s45
U0

2s3
2

6s1
2

corresponds to the nonstandard truncation. The second

U15
2s1

3U0
~11c2!2cV12k, V05cU0 , ~37!

W052
U0

2

2
~11c2!, W152

2

3
s1~c211!, s05

3

4
U0

2 ,
5-5
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W25
11c2

9U0
2 ~4s1

223s2U0
2!, U25V25W35W450

is related to the standard truncation while the last cas
equivalent to the second case. Now the remaining proble
to solve the equation system~32! and give out the explicit
expressions of the expansion functions. In these cases
expansion functions can be expressed by the usual Ja
elliptic functions with help of the mapping deformation a
proach proposed in Refs.@16–18#.

Similar to the method used in Ref.@17# or more con-
cretely in Ref.@18#, to solve the system~32!, one may sim-
plify the equations by means of the symmetry property of
expression. It is easy to check that Eq.~32! is form invariant
under the Mo¨bious transformation. In other words, if w
make the transformation

j→ a1bg

c11dg
~bc12adÞ0!, ~38!

then the functiong satisfies the same equation as Eq.~32!

gx5A(
j 50

4

s̄jg
j5

gy

c
5

gt

k
, ~39!

with

s̄05
s4a41s3a3c11s2a2c1

21s1ac1
31s0c1

4

~ad2bc1!2
, ~40!

s̄15
c1

2~3ad1c1b!s1

~ad2bc1!2
1

2ac1~ad1c1b!s2

~ad2bc1!2

1
a2~ad13c1b!s3

~ad2bc1!2
1

4a3bs4

~ad2bc1!2
1

4c1
3ds0

~ad2bc1!2
,

s̄25
c1d~ad1c1b!s1

~ad2bc1!2
1

~a2d21b2c1
214abc1d!s2

~ad2bc1!2

1
3ab~ad1c1b!s3

~ad2bc1!2
1

6a2b2s4

~ad2bc1!2
1

6c1
2d2s0

~ad2bc1!2
,

s̄35
d2~ad13c1b!s1

~ad2bc1!2
1

2bd~ad1c1b!s2

~ad2bc1!2

1
b2~3ad1c1b!s3

~ad2bc1!2
1

4ab3s4

~ad2bc1!2
1

4c1d3s0

~ad2bc1!2
,

s̄45
s4b41s3b3d1s2b2d21s1bd31s0d4

~ad2bc1!2
.

From Eq.~40!, we know that the expansion functionj can be
expressed explicitly with help of the standard Jacobi ellip
functions by the appropriate selections of the consta
a, b, c1, andd such that
03660
is
is

the
obi

e

c
ts

s̄15 s̄350. ~41!

In Ref. @16#, various solutions of Eqs.~39! with ~41! were
listed in a table. Then using the results of Ref.@16#, say,

gx5Am2

p2
g42~m211!g21p2, g5p snx, ~42!

we may obtain many kinds of periodic solutions of th
DLWE ~1!. In Eq. ~42!, snx is the usual Jacobi elliptic sine
function andm is the modular of the function snx. In this
section, we only write down two special cases, which are
generalizations of the soliton solutions listed in the last s
tion.

If we rewrite the arbitrary constants in the first case~36!
as

U0
25

n2a1
2

3p2
~m21p42p2m22p2!, s15

s3

3
a1

2 ,

s25
n2

2p2
~3m21p2m21p213p4!, s35

3n2

2a1p2
~p42m2!,

~43!

wherem, n, a1, andp are new arbitrary constants. Then th
general solution of Eq.~32! with Eqs.~36! and ~43! has the
form

j5a1

12p snz

11p snz
, z[n~x1cy1kt!. ~44!

The corresponding periodic solution of Eq.~1! reads

u5
A11p2A2 sn2 z

A0~p2 sn2 z21!
,

v52
B11p2B2 sn2 z

a1~p2 sn2 z21!
, ~45!

w5
C0~C122p2C2 sn2 z1p4C3 sn4 z!

~p2 sn2 z21!2
,

where

A0523U0p2, B152cU01V1a1 , B252cU02V1a1 ,
~46!

A15a1n2@p4~c213!2m2~c221!22p2~m211!#

23U0p2~cV11k!,

A25n2a1@m2~c213!2p4~c221!22p2~m211!#

13U0p2~cV11k!,

C05
n4a1

2~11c2!

9p4U0
2

,

5-6
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C15m412p4m2~2p223!1p6~423p2!,

C25m4~4p426p213!22p2m2~3p425p213!

1p4~3p426p214!,

C354m4~p223!14m2p2~223p2!1p8

with V1 being an arbitrary constant.
In Fig. 1, the periodic waves are plotted for small modu

(m51/2) for the fieldsu, v, andw which are expressed b
Eq. ~45! with

U05c51, n50.08, A0520.6996, ~47!

A2570.03961, A1560.009238,

B1520.528, C3520.3855, p520.4829,

C150.03546, k560.2919,

C051.420, C250.03109, V1560.002865,

a15792.13, B252.264.

Figures 1~a! and 1~b!. are related to the upper and low
signs of Eq.~47!, respectively. The parameters of Eq.~47!
are obtained by Eqs.~43! and~46! after fixing four arbitrary
constants of them, say,m, n, c, andU0.

FIG. 1. Plot of the periodic solution~45! with Eq. ~47! for the
WZ equation for smallm (m50.5). ~a! The periodic solution re-
lated to the upper sign of Eq.~47!. ~b! The periodic solution related
to the lower sign of Eq.~47!. The solid lines, dotted lines, an
dash-dotted lines denote the values of the fieldsv, u, and w, re-
spectively.
03660
r

As the modular increases, the periodic solution~45! be-
comes a soliton ‘‘lattice’’ solution. Figure 2 shows the solito
lattice structure of Eq.~45! with m50.9 and

U05c51, n50.08, A0520.5736,

C250.7527, C050.04459,

C3526.486, B252.211, B1520.4228,

k570.00495, p520.4373, ~48!

A2570.212, V150.0158, A1560.04054,

a15713.38, C150.525.
As the modular increases further to 1, the periodic of

lattice becomes larger and larger. Finally, whenm51 the
period becomes infinity and the function snz becomes tanhz,
i.e.,

snzum→1→tanhz. ~49!

So whenm→1, the periodic solution~45! will be reduced to
the ring- or bell-type soliton solution.

In Fig. 3, the special type of bell and ring shape solit
solution@Eq. ~45! with Eq. ~49!# is plotted. The correspond
ing parameters related to Fig. 3 are

U051, c51, n50.08, k570.01786,

FIG. 2. Structures of the soliton lattice solution~45! with Eq.
~50! and m50.9 for the WZ equation.~a! The bell-bell soliton
lattice expressed by Eqs.~45! and~48! with the upper sign.~b! The
bell-ring soliton lattice related to Eqs.~45! and~48! with the lower
sign. The solid lines, dotted lines, and dash-dotted lines denote
values of the fieldsw, v, andu, respectively.
5-7
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B252.205, A0520.5569,

a15211.45, A2570.2388, C150.8409,

C050.03466, p520.4309, ~50!

C251.319, B1520.4093, v1560.01786,

A1560.04433, C35210.18.

Figure 3~a! is related to the upper sign of Eq.~50! and the
lower sign corresponds to Fig. 3~b!. From Fig. 3, one can se
that the soliton solution for the fieldw possesses always th
bell shape, while the fieldsu andv may possess both the be
shape or the ring shape.

Similarly, for the second case~37!, if we rewrite the pa-
rameters as

s352
3n2

p62~a22a1!2
@p2~a11a2!~11m2!

22~a2p41a1m2!#,

s45
2n2

p2~a12a2!2
~m22p2!~12p2!,

FIG. 3. Structures of a single soliton solution~45! with Eq. ~50!
for the WZ equation.~a! The bell-bell soliton solution described b
Eqs. ~45!, ~49!, and ~50! with the upper sign.~b! The bell-ring
soliton solution~45!, ~49!, and~50! with the lower sign. The solid
lines, dotted lines, and dash-dotted lines denote the values o
fields w, v, andu, respectively.
03660
s15
n2

p2~a22a1!2
@p2a2a1~a21a1!~11m2!

22p4a2
322m2a1

3#, ~51!

s25
n2

p2~a22a1!2
@p2~a2

22a1
2!~m221!

12p2a2~3p2a222a1!12m2a1~3a122a2p2!#,

U0
25

4n2~pa22a1!

3p2~a22a1!2
~pa21a1!~pa22a1m!~pa21a1m!,

wherem, n, a1 , a2, andp are all arbitrary constants. The
the general solution of Eq.~32! with Eqs.~37! and ~51! be-
comes

j5
a11a2p snz

11p snz
, z[n~x1cy1kt!. ~52!

In this case, the final periodic solution of Eq.~1! has the
simple form

u5
A62p A7 snz

A5~a11a2p snz!
,

v5
~cU01V1a2!p snz1cU01V1a1

a11a2p snz
, ~53!

w5
C5~C61C7 snz1C8 sn2 z!

~a11a2p snz!2
,

with

A553p2U0~a22a1!2,

A65p2a1
2a2~11m2!~a11c2a11c2a22a2!

22p4a2
3~a11c2a11a2!22c2a1

4m2

13U0p2a1~k1cV1!~a22a1!2, ~54!

A752p2n2a1a2
2~11m2!~a21c2a22a11c2a1!

24n2a1
3m2~a21c2a22a1!24a2

4c2n2p4

23U0a2p2~k1cV1!~a22a1!2,

C55
4n4~c211!

9p2U0
2~a22a1!2

, C752a2
3p3a1

3~m221!2,

C65a1
2~a1

4m413a2
4p4!~11m2!22p2a2

2~a2
4p413a1

4m2!,

C85a2
2p2~a2

4p413a1
4m2!~11m2!

22a1
2m2~a1

4m213a2
2p4!.

he
5-8
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Similar to the first case, when the modularm tends to 1, the
periodic solution~53! tend to the kink solution for the field
u andv and the bell soliton solution for the fieldw because
of Eq. ~49!.

IV. SUMMARY AND DISCUSSIONS

In summary, for the WZ equation~1!, there are three type
of soliton solutions though it has no Painleve´ property. The
first type of multisoliton solutions@Eq. ~9! with Eqs.~15! and
~18!# with a special dispersion relation~19! can be obtained
from the standard truncation of the WTC approach.

Usually, the solitons and the solitary wave solutions s
isfy some dispersion relations. However, the results of
paper show us that for some types of nonlinear models th
may be some types of solitons or solitary wave solutio
without any dispersion relation. The second and third ty
of soliton solutions of the WZ equation~1! are not necessar
to satisfy some special types of dispersion relations. Ho
ever, if we put some special boundary conditions to the s
tary wave solutions, then we have to put some special
persive relations to the solitary wave solutions. These
types of solitary wave solutions are obtained from the n
standard and standard truncations of an extended Co
Painlevéexpansion, respectively. For the second type of s
ton solution@Eq. ~25! with Eqs.~26! and~27!#, all the fields
u, v, andw are bell or ring type soliton solutions. The thir
type of soliton solution@Eq. ~28! with Eqs.~27! and~29!# is
a generalization of the first type of soliton solutions. In t
third case, the fieldsu and v are kink or antikink soliton
solutions while the fieldw is a bell-type soliton solution.

Though the general traveling wave solutions~and then the
k,

d

03660
t-
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s
s

-
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s-
o
-
e’s
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periodic solutions expressed by elliptic function solutions! of
the WZ system~1! can be obtained by direct integration
However, any one of the standard and nonstandard tru
tions of the WTC and Conte expansions cannot be use
find the exact elliptic function solutions. In this paper, we u
standard and nonstandard truncations of a special lim
case of the extended Painleve´ expansion to obtain som
types of periodic solutions which are expressed by the Ja
elliptic functions. When the modular of the elliptic functio
tends to 1, two types of periodic solutions tends to t
equivalent two types of solitary wave solutions, respective
The method proposed here to find the exact periodic s
tions expressed by the Jacobi elliptic functions can be u
for other types of models, which cannot be integrated
rectly.

Because the model~1! is derived for modeling nonlinea
and dispersive long gravity waves traveling in two horizon
directions on shallow waters. More details on the results
this paper, especially on the soliton solutions without disp
sion relations and the method to obtain these solutions,
worthy of further study.
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